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ON THE LONG-PERIOD MOTION IN THE 

SEMI-MAJOR AXIS OF THE ORBIT OF THE 

TELSTAR 2 SATELLITE 

by 

James P. Murphy 

A representation for the indirect effect of solar radia- 
tion pressure on the semi-major axis of an artificial earth 
satellite caused by passage in and out of the earth's shadow 
is examined. The theory is then used to explain the appear- 
ance of periodicities in the observed semi-major axis of the 
orbit of Telstar 2. n 
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ON THE LONG-PERIOD MOTION IN THE 

SEMI-MAJOR AXIS OF THE ORBIT OF THE 

TELSTAR 2 SATELLITE 

by 

James P. Murphy 

INTRODUCTION 

The Keplerian elements of a close artificial ear th  satellite undergo perturba- 
tions not only due to the earth 's  oblateness, but a lso lunar and solar gravitational 
forces,  solar radiation pressure,  and atmospheric drag. 

In the elements published by the Goddard Space Flight Center for  the 
Tels tar  2 satellite, the effects of the oblateness have been eliminated by the 
Brouwer Satellite Theory (Reference 1). Since the satellite's perigee height 
was about 975 kilometers, it can be considered to be relatively unaffected by 
atmospheric drag. The influence of lunar and solar gravitation and direct  solar 
radiation pressure has already been analyzed f o r  long period effects in the mo- 
tion of this satellite (Reference 3). However, this satellite undergoes indirect 
solar  radiation pressure effects due to the fact that the satellite passes in and 
out of the ear th 's  shadow. This effect is best observed in the semi-major axis, 
since this element undergoes no long-period motion from any other source. 

RADIATION PRESSURE DISTURBING FUNCTION 

The disturbing function may be written as 

A 
R = F ' m  r c o s s  , 
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where s is the geocentric angle between the sun and the satellite. Thus, 

i E - 
COS s - COS' 3 COS' T cos(f + w + n - h , )  

i E 
+ s i n 2  T C O S '  2 cos(f + w - ! J + X , )  

+ cos' 3 s i n '  5 cos (f + w  +R +A,) 

+ s i n 2  7 s i n 2  2 cos (f + ~ - R - A , )  

+ 2 s i n  i 

i E 

i E 

(2) 1 1 
s i n  E f +w-A,) - cos  (f + u + A , )  

Also, 

r cos f = a(cos E - e )  

r s i n  f a (1-e2)1 '2  s i n  E . 

Substituting Equation (2) in Equation (1) and making use  of Equations (3),  the 
disturbing function R becomes 

R = Fa [S(cos E - e )  + V s i n  E] , 

where 

i E s = - C O S ~ T C O S ~ ~  cos(w+!J-A, )  

2 E  - s in2  + cos 7 cos (u -0 t A,) 

- cos2 5 s i n 2  7 cos (w t 0 +A,) 

- s i n 2  -2- s i n 2  T  COS(^ -0 -A,) 

E 

i E 

2 s i n  i s i n  E 
1 _ -  
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i E v = + C O S ’  5 COS’ 3 s i n ( w t R - A , )  

i E 
+ s i n ’  2 c o s 2 z  s in(w-QtA,)  

+ c o s 2  3 s i n ’ 3  s i n ( w t R t A , )  

+ sin’  2 s in’  7 s in!w-n-Q 

+ 3 s i n  i 

i E 

i E 

1 
s i n  E 

and where 

THEORETICAL VARIATION IN SEMI-MAJOR A X I S  

The differential equation representing the variation in the semi-major 
axis is 

But, 

Thus, 
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saR = - 2  - a3 F [Scos E + V sinEIEE: , P 

where E,  and E, are the values of the eccentric anomaly of the satellite a t  exit 
from and entrance into the shadow of the earth,  and where 

Thus &aR is the perturbation after one revolution. 

SHADOW CONDITION 

In order to solve for  the values of the eccentric anomaly a t  exit f rom and 
entrance into the shadow, a variation of the method suggested by Kozai in 
(Reference 2) is adopted. If the unit of distance is the radius of the earth,  
then the boundary of the shadow is expressed by 

r s i n s  = 1 .  

We also have 

(4) 

r 
x c o s  s = - S ( c o s  E-e)-V- s i n  E (5) 

and 

r 
a - 1 - e c o s E  ( 6 )  - -  

If we assume S ,  V, and e are constants during one revolution, then the 
desired values fo r  the eccentric anomaly may be obtained. However, the 
relations above result in a fourth degree equation in either cos E or s i n  E. 
Thus, it is possible to solve the quartic for ,  say, cos E to obtain four real roots 
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between zero  and one and hence have eight possibilities for  the two desired 
values of E. The number of possibilities is immediately reduced to four by 
solving the quartic f o r  s i n  E also and testing whether the sum of the squares 
of a root f rom each equation equals unity. There can be at most four such 
pa i r s  satisfying this condition. Two of these four roots are eliminated by 
testing whether the condition that cos s is negative is satisfied. 

The two quartics in cos E and sin E may be obtained from equations (4), 
(5) ,  and (6). If we let x = cos E and y = s i n  E , the quartics are 

and 

where 
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and where 

If i solving th above quartics any complex roots o r  rea l  roots of magnitude 
greater  than one appear, then these roots are discarded and the process  of testing 
for  permissible values of eccentric anomaly continues. It is possible that there  
are no values satisfying the conditions for  shadow. This indicates that the 
satellite does not enter the shadow on that revolution, and hence the value of SaR 
for  that revolution is zero. 

APPLICATION TO THE ORBIT OF TELSTAR 2 

An examination of the mean orbital elements of Tels tar  2 reveals long-period 
variations in the semi-major axis, eccentricity, inclination, argument of perigee, 
and longitude of the ascending node. The mean elements referred to are the 
"double primed'? variables of Brouwer (Reference 1) in which the effects due to 
the zonal harmonics through J have been accounted for. The periodicities 
present. in all but the first of these elements have been explained Reference ( 3 ) .  
The variation in  the mean semi-major axis a" of Telstar 2 over a period of 
about 540 days is indicated in Figure (1). This variation was explained by the 
indirect effect of the solar radiation pressure.  A computed perturbation for  each 
revolution, saR,  was calculated and added to the sum of the perturbations f rom 
each of the previous revolutions. In this way an accumulative 6a (since the 
initial epoch) was obtained. In computing the perturbations between successive 
epochs, the values of the angular variables W ,  0, and A, were updated after each 
revolution. The values of the other elements of the sun and satellite were up- 
dated at each epoch. Explicit relations used in updating are given in the next 
section. 
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After computing the value of 6a since the initial epoch for each of the 77 
epochs over almost 540 days, values of the semi-major axis constant a, were 
obtained by 

It is interesting to note that, if the perturbations were multiplied by 4/3, the 
value of a c  would have remained much more constant than i t  did. Such a 
quantity, ak , defined by 

- - - 4 6a , 3 ak - 

would appear only to have a slight downward trend, perhaps due to a small  
amount of atmospheric drag, over the nearly 540 days of data. 

Values of a'', ac, and ak over the period studied appears in Table (1) and 
graphs of a", ac and ak versus time appear in Figure (1).  

EPHEMERIS FOR THE SUN AND SATELLITE 

The mean longitude of the sun is obtained after each revolution from 
(Reference 4): 

A, = 279: 69668 t 36000P 76892T t Oo.00030T2 , 

where T is the number of Julian Centuries since January 0.5, 1900. For January 
1.0, 1960 the number of Julian days since January 0.5, 1900 is 21914.5. 

Similarly, w and R of the satellite a re  obtained after each revolution 
from 

= W o  t c;(t - t o )  

R = R, + h(t - to )  , 
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W ~ ~ m w m ~ m w O O O o o o o m m m m - ~ ~ - - ~  
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I I I I I I I ,  
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. 
where 

and 
2 

3 J 2 a e  iJ = -- cos i , 
a 2 ( 1 - e 2 ) 2  

and where ( t  - t o )  is measured in canonical units of 806.832 seconds. At each 
epoch, new values of the Keplerian elements a r e  a lso used in evaluating S, V, Sa, 
and the shadow conditions. In addition, updated values of E are obtained from 

E = 23: 452294 - 0: 013013T - 0: 000002T2 . 

CONCLUSIONS 

In computing the perturbations, the multiplier F = F' A/m must be evalu- 
ated. To calculate the presentation area A, it was assumed that the spacecraft 
is a sphere. However, this is only an approximation to its shape. In addition, 
its surface is  faceted. Since at any one time only a portion of the surface of the 
satellite is exposed to sunlight, the presentation area is only a fraction of the 
total surface area.  In computing the perturbations Sa and the associated 
constant ac, i t  was assumed that the presentation area is 1/4 of the total area. 
If we multiply 6a by 4/3, which is equivalent to considering the presentation 
a rea  to be 1/3 of the total a rea ,  the associated constant is ak. If we assume 
that the semi-major axis decreases  slightly due to drag, then inspection of the 
curve for ak in  Figure (lj indicates that perhaps a larger  factor for  F is in order.  

Deviations of ak f rom a straight line-especially near the end of the curve- 
may be due to a change in the level of solar  activity. Changes in solar  activity 
may result  in the need to adjust the Radiation Pressure  Constant F' f rom the 
value of -4.63~ dynes/cm2 which was used in computing Sa. 

Since similar periodicities occur in the semi-major axes of other satellites 
above the drag region (for example Relay 1 and Relay 2) ,  an extended analysis of 
the motion of these satellites may result  in an improved value of F' and of A 
f o r  satellites of various shapes. 

Re-radiation from the surface of the ear th  and the fact that the computed 
8a is only a f i r s t  approximation to the total perturbation in semi-major axis 
may also aid in  explaining the residual effects present in a,  or ak. 
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L APPENDIX A 

List of Symbols 

A 

a 

E 

e 

F' 

f 

C 

i 

J 2  

M 

m 

m' 

n 

R 

S 

T 

X 

Y 

A, 

ii 
R 

w 

w 

E 

Effective presentation area of the satellite 

Semi-major axis of satellite's orbit 

Mean equatorial radius of the earth (6378.388 km*) 

Eccentric anomaly of satellite 

Eccentricity of satellite's orbit 

Solar radiation pressure  force constant = -4.63 X IO-' dynes/cm** 

True anomaly of satellite 

Gravitational constant 

Inclination of satellite's orbit plane to ear th 's  equatorial plane 

Zonal harmonic coefficient in  earth's gravitational potential (1.08219 x 

Mean anomaly of the satellite 

M a s s  of the satellite 

M a s s  of the Earth 

Mean motion of the satellite 

Solar radiation pressure disturbing function 

Cosine of the geocentric angle between the sun and the satellite 

Number of Julian Centuries (of 36525 days) since January 0.5, 1900 

= COS E 

= sin E 

Mean longitude of the sun 

Longitude of the ascending node of the satellite's orbit 

Mean motion of R 

Argument of perigee of satellite's orbit 

Mean motion of w 

Mean obliquity of the ecliptic 
~ ~~~~ 

*Currently in use  at Goddard Space Flight Center. 
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